Wednesday, April 24, 2013

Arctic Sea Ice Animation

Arctic Sea Ice Minimum Volume

Above a tilted screenshot from the animation below, by Andy Lee Robinson, of Arctic Sea Ice minimum volumes reached every September since 1979, based on data from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS, Zhang and Rothrock, 2003) at the University of Washington.

Andy also composed and performed the piano music, "Ice Dreams", accompanying the video.

video from https://www.youtube.com/watch?v=YgiMBxaL19M


Dorsi Diaz
By Dorsi Diaz

They say a picture can be worth a thousand words. If so, then this video of the Arctic Sea ice loss between 1979 and 2012 must be worth a million. As the recently released video begins to go viral, more people are waking up to the reality of climate change.

Produced by Andy Lee Robinson, this beautiful short clip with its haunting music is revealing the reality of climate change in a brutal and honest way - perhaps even better than any journalist ever could.

In an interview with Robinson, I was amazed at how he had managed to put together this vital information in such a compelling video, and sought to find out more.

To the climate deniers horror, Andy has done this video with no sort of compensation - dashing away climate deniers theories that all climate activists "are on the payroll." With hundreds of painstaking hours put into the development of his video, Andy says he was motivated by "experimenting with ideas and what ifs" and sought to "bring to life something that only existed in my mind to communicate an important message that is being ignored."

To create the video, he used a text editor, numbers and only his imagination to weave together the horrifying decline of Arctic sea ice that has occurred in just 13 short years.

Andy says one of the reasons for creating the video was, "to contribute something to humanity and be recognized for it, applying the skills I have learnt with my free time and not to live in vain" and also, "to prove that anyone can achieve anything they want to given enough determination and dedication."

With over 100 hours invested just into the writing of the program for the video, Andy also said it took 28 hours for 7 servers to render the final video, then about a half hour to write, record, edit and merge the music. The piano composition in the video, "Ice Dreams", was also composed by Andy, who also specializes in digital audio sampling and signal processing.

Robinson, a linux system administrator and consultant, has a passion to bring awareness about climate change to the masses and is adamant about what may happen if civilization does not address this growing threat: "We are in a period of mass extinction and heading for decimation of the quality of life for most lifeforms on the planet, including ourselves who are also subject to the laws of nature of boom and bust as resources are exploited and depleted."

Robinson also believes, with many others, that climate change and ocean acidification are, "planetary emergencies in progress."

Robinson doesn't mince any words either when asked why he created the video: "To be heard loudly and truthfully because mainstream media is still tiptoeing around the herd of elephants in the room because of the fear of change and the pressure of special interests committed to ensuring it stays that way, ignoring the fact that it cannot."

Until recently, climate deniers had dominated much of the political landscape and held a tight reign on the mainstream media. Now that climate change seems to be spiraling out of control with billions of dollars in weather related disasters, people are waking up to a preview of what it's like to live in a climate altered world.

Robinson's research for the video uses records of Arctic sea ice loss from PIOMAS through the Polar Ice Center, a group of dedicated investigators that conducts interdisciplinary research on the oceanography, climatology, meteorology, biology and ecology of the ice-covered regions on Earth and elsewhere in the solar system.

Through the perfect dance of loss and hauntingly beautiful music merged with pending disaster, Robinson has brought home a message in this video that we all need to heed: "Survival is not compulsory, nor a God given right. It requires effort, investment and cooperation."

Are we listening yet?

Dorsi Diaz is a freelance writer and art educator living in the San Francisco Bay Area. Dorsi's passion is to help adults and children unlock their creativity and imagination and to also spread the word about the effects of world-wide climate change - follow Dorsi Diaz on Twitter

Below, the Arctic Death Spiral, another visualization of the PIOMAS data by Andy Lee Robinson. 

Andy's Arctic Death Spiral - update incl May 2013 - latest version at http://haveland.com/share/arctic-death-spiral.png


Below, Andy's Arctic Death Spiral video, with the sea ice volume data controlling spectral harmonics.




Added below is a video of another Arctic Death Spiral, accompanied by Chopin's 'Funeral March'. This work is not by Andy, it's from reric.org by R. Eric Collins.



Tuesday, April 16, 2013

Lawrence Livermore scientists discover new materials to capture methane

Methane capture in zeolite SBN. Blue represents adsorption
sites, which are optimal for methane (CH4) uptake. Each site
is connected to three other sites (yellow arrow) at optimal
interaction distance. Image credit: LLNL News Release
Scientists at Lawrence Livermore National Laboratory (LLNL) and UC Berkeley and have discovered new materials to capture methane, the second highest concentration greenhouse gas emitted into the atmosphere.

Methane is a substantial driver of global climate change, contributing 30 percent of current net climate warming. Concern over methane is mounting, due to leaks associated with rapidly expanding unconventional oil and gas extraction, and the potential for large-scale release of methane from the Arctic as ice cover continues to melt and decayed material releases methane to the atmosphere. At the same time, methane is a growing source of energy, and aggressive methane mitigation is key to avoiding dangerous levels of global warming.

The research team, made up of Amitesh Maiti, Roger Aines and Josh Stolaroff of LLNL and Professor Berend Smit, researchers Jihan Kim and Li-Chiang Lin at UC Berkeley and Lawrence Berkeley National Lab, performed systematic computer simulation studies on the effectiveness of methane capture using two different materials - liquid solvents and nanoporous zeolites (porous materials commonly used as commercial adsorbents).

While the liquid solvents were not effective for methane capture, a handful of zeolites had sufficient methane sorption to be technologically promising. The research appears in the April 16 edition of the journal, Nature Communications.

Unlike carbon dioxide, the largest emitted greenhouse gas, which can be captured both physically and chemically in a variety of solvents and porous solids, methane is completely non-polar and interacts very weakly with most materials.

"Methane capture poses a challenge that can only be addressed through extensive material screening and ingenious molecular-level designs," Maiti said.

Methane is far more potent as a greenhouse gas than CO2. Researchers have found that the release of as little as 1 percent of methane from the Arctic alone could have a warming effect approaching that being produced by all of the CO2 that has been pumped into the atmosphere by human activity since the start of the Industrial Revolution.

Methane is emitted at a wide range of concentrations from a variety of sources, including natural gas systems, livestock, landfills, coal mining, manure management, wastewater treatment, rice cultivation and a few combustion processes.

The team's research focused on two different applications -- concentrating a medium-purity methane stream to a high-purity range (greater than 90 percent), as involved in purifying a low-quality natural gas; and concentrating a dilute stream (about 1 percent or lower) to the medium-purity range (greater than 5 percent), above methane's flammability limit in air.

Through an extensive study, the team found that none of the common solvents (including ionic liquids) appears to possess enough affinity toward methane to be of practical use. However, a systematic screening of around 100,000 zeolite structures uncovered a few nanoporous candidates that appear technologically promising.

Zeolites are unique structures that can be used for many different types of gas separations and storage applications because of their diverse topology from various networks of the framework atoms. In the team's simulations, one specific zeolite, dubbed SBN, captured enough medium source methane to turn it to high purity methane, which in turn could be used to generate efficient electricity.

"We used free-energy profiling and geometric analysis in these candidate zeolites to understand how the distribution and connectivity of pore structures and binding sites can lead to enhanced sorption of methane while being competitive with CO2 sorption at the same time," Maiti said.

Other zeolites, named ZON and FER, were able to concentrate dilute methane streams into moderate concentrations that could be used to treat coal-mine ventilation air.

The work at LLNL was funded by the Advanced Research Projects Agency-Energy (ARPA-E).

References

- News Release
Lawrence Livermore scientists discover new materials to capture methane
https://www.llnl.gov/news/newsreleases/2013/Apr/NR-13-04-03.html

-  New materials for methane capture from dilute and medium-concentration sources
http://www.nature.com/ncomms/journal/v4/n4/abs/ncomms2697.html

Related

- Methane sequestration in hydrates
http://arctic-news.blogspot.com/2012/06/methane-sequestration-in-hydrates.html

Another link between CO2 and mass extinctions of species

By Andrew Glikson, Australian National University
Andrew Glikson, earth and
paleo-climate scientist at
Australian National University

It’s long been known that massive increases in emission of CO2 from volcanoes, associated with the opening of the Atlantic Ocean in the end-Triassic Period, set off a shift in state of the climate which caused global mass extinction of species, eliminating about 34% of genera. The extinction created ecological niches which allowed the rise of dinosaurs during the Triassic, about 250-200 million years ago.

New research released in Science Express has refined the dating of this wave of volcanism. It shows marine and land species disappear from the fossil record within 20,000 to 30,000 years from the time evidence for the eruption of large magma flows appears, approximately 201 million years ago. These volcanic eruptions increased atmospheric CO2 and increased ocean acidity.

Mass extinctions caused by rapidly escalating levels of CO2 have occurred before. Global warming image from www.shutterstock.com
Mass extinctions due to rapidly escalating levels of CO2 are recorded since as long as 580 million years ago. As our anthropogenic global emissions of CO2 are rising, at a rate for which no precedence is known from the geological record with the exception of asteroid impacts, another wave of extinctions is unfolding.

Mass extinctions of species in the history of Earth include:
  • the ~580 million years-old (Ma) Acraman impact (South Australia) and Acrytarch (ancient palynomorphs) extinction and radiation 
  • Late Devonian (~374 Ma) volcanism, peak global temperatures and mass extinctions 
  • the end-Devonian impact cluster associated with mass extinction, which among others destroyed the Kimberley Fitzroy reefs (~360 Ma) 
  • the upper Permian (~267 Ma) extinction associated with a warming trend
  • the Permian-Triassic boundary volcanic and asteroid impact events (~ 251 Ma) and peak warming 
  • the End-Triassic (201 Ma) opening of the Atlantic Ocean, and massive volcanism 
  • an End-Jurassic (~145 Ma) impact cluster and opening of the Indian Ocean 
  • the Cretaceous-Tertiary boundary (K-T) (~65 Ma) impact cluster, Deccan volcanic activity and mass extinction 
  • the pre-Eocene-Oligocene boundary (~34 Ma) impact cluster and a cooling trend, followed by opening of the Drake Passage between Antarctica and South America, formation of the Antarctic ice sheet and minor extinction at ~34 Ma. 

Throughout the Phanerozoic (from 542 million years ago), major mass extinctions of species closely coincided with abrupt rises of atmospheric carbon dioxide and ocean acidity. These increases took place at rates to which many species could not adapt. These events – triggered by asteroid impacts, massive volcanic activity, eruption of methane, ocean anoxia and extreme rates of glaciation (see Figures 1 and 2) – have direct implications for the effects of the current rise of CO2.

Figure 1 – Trends in atmospheric CO2 and related glacial and interglacial periods since the Cambrian (542 million years ago), showing peaks in CO2 levels (green diamonds) associated with asteroid impacts and/or massive volcanism. CO2 data from Royer 2004 and 2006.
Figure 2 – Relations between CO2 rise rates and mean global temperature rise rates during warming periods, including the Paleocene-Eocene Thermal Maximum, early Oligocene, mid-Miocene, late Pliocene, Eemian (glacial termination), Dansgaard-Oeschger cycles, Medieval Warming Period, 1750-2012 and 1975-2012 periods.

In February 2013, CO2 levels had risen to near 396.80ppm at Mauna Loa Atmospheric Observatory, compared to 393.54ppm in February 2012. This rise – 3.26ppm per year – is at the highest rate yet recorded. Further measurements show CO2 is at near 400ppm of the atmosphere over the Arctic. At this rate the upper stability threshold of the Antarctic ice sheet, defined at about 500–600ppm CO2 would be reached later this century (although hysteresis of the ice sheets may slow down melting).

Our global carbon reserves – including coal, oil, oil shale, tar sands, gas and coal-seam gas – contain considerably more than 10,000 billion tonnes of carbon (see Figure 5). This amount of carbon, if released into the atmosphere, is capable of raising atmospheric CO2 levels to higher than 1000ppm. Such a rise in atmospheric radiative forcing will be similar to that of the Paleocene-Eocene boundary thermal maximum (PETM), which happened about 55 million years-ago (see Figures 1, 2 and 4). But the rate of rise surpasses those of this thermal maximum by about ten times.
Figure 3 – Plot of percent mass extinction of genera versus peak atmospheric CO2 levels at several stages of Earth history.
Figure 4 – The Paleocene-Eocene Thermal Maximum (PETM) represented by sediments in the Southern Ocean, central Pacific and South Atlantic oceans. The data indicate a) deposition of an organic matter-rich layer consequent on extinction of marine organisms; b) lowering of δ18O values representing an increase in temperature and c) a sharp decline in carbonate contents of sediments representing a decrease in pH and increase in acidity (Zachos et al 2008) 

The Paleocene-Eocene boundary thermal maximum event about 55 million years ago saw the release of approximately 2000 to 3000 billion tons of carbon to the atmosphere in the form of methane (CH4). It led to the extinction of about 35-50% of benthic foraminifera (see Figure 3 and 4), representing a major decline in the state of the marine ecosystem. The temperature rise and ocean acidity during this event are shown in Figures 4 and 6.

Based on the amount of carbon already emitted and which could continue to be released to the atmosphere (see Figure 5), current climate trends could be tracking toward conditions like those of the Paleocene-Eocene event. Many species may be unable to adapt to the extreme rate of current rise in greenhouse gases and temperatures. The rapid opening of the Arctic Sea ice, melting of Greenland and west Antarctic ice sheets, and rising spate of floods, heat waves, fires and other extreme weather events may signify a shift in state of the climate, crossing tipping points.
Figure 5 – CO2 emissions from fossil fuels (2.12 GtC ~ 1 ppm CO2). Estimated reserves and potentially recoverable resources.By analogy to medical science analysing blood count as diagnosis for cancer, climate science uses the greenhouse gas levels of the atmosphere, pH levels of the ocean, variations in solar insolation, aerosol concentrations, clouding states at different levels of the atmosphere, state of the continental ice sheets and sea ice, position of high pressure ridges and climate zones and many other parameters to determine trends in the climate. The results of these tests, conducted by thousands of peer-reviewed scientists world-wide, have to date been ignored, at the greatest peril to humanity and nature.

Continuing emissions contravene international laws regarding crimes against humanity and related International and Australian covenants. In the absence of an effective global mitigation effort, governments world-wide are now presiding over the demise of future generations and of nature, tracking toward one of the greatest mass extinction events nature has seen. It is time we learned from the history of planet Earth.

Figure 6: The Paleocene-Eocene boundary thermal maximum. http://www.uta.edu/faculty/awinguth/petm_research/petm_home.html

This article was earlier published at The Conversation (on March 22, 2013).