Showing posts with label extinction. Show all posts
Showing posts with label extinction. Show all posts

Sunday, April 28, 2024

The Orwellian rules-based Climate

By Andrew Glikson

“History is a nightmare from which I am trying to wake” (James Joyce)

Figure 1. Extinctions CC from: The five mass extinctions in Earth History. The rate of the current rise of greenhouse
gas levels and thereby temperatures is higher by more than an order of magnitude than that of previous
mass extinctions. (Figures 11.2, 11.5). Glikson. A.Y., 2023 The Trials of Gaia.

War ─ the mass sacrifice of young generations throughout history, culminating in the barbarism of empires such as the Roman “Pax Romana”, represents the repeated collapse of sanity with transient intervals such as the League of Nations between WWI and the impotent United Nations. More recent bloodsheds such as the Korean, Viet Nam, Rwandan and Middle Eastern wars, along with global heating and nuclear proliferation, herald the collapse of a species dominated by tribalism and the hubris of the 24-hour media cycle ─ A tale full of sound and fury told by an idiot signifying nothing (Macbeth, Shakespeare).

In a human civilization dominated by mega-empires, armed to the teeth with planet-killer weapons, ruled by military juntas, industrial military complexes, Earth-poisoning energy corporations, multi-billionaires and media tycoon, the concept of “democracy” provides a fig leaf covering exploitation, repression and massacres.

The potential consequences of a nuclear war appear to have escaped the mainstream media attention. There is little evidence of peace negotiations between the major adversaries and measures of averting accidental conflagrations, whether human error or the failure of a computer chip, have been minimized. Having betrayed the prospect of a peaceful future, the warring parties keep investing in $trillion-scale re-armament, covered by sophisticated terms such as self-defence, stability and the rules-based international order.

Purporting a climate catastrophe can be averted by development of alternative energy despite a rise in the production of fossil fuels, growing emission of greenhouse gases (~4 ppm/year in 2023-2024), the rise in global temperatures toward +4 degrees Celsius above preindustrial levels and the spate of extreme weather events. A nuclear armada aimed at all advanced life is expanded into space while the young generation is occupied with Tik-Tok games.

According to climate science authorities (Hansen et al., 2016) “Burning all fossil fuels would create a different planet than the one that humanity knows. The paleo-climate record and ongoing climate change make it clear that the climate system would be pushed beyond tipping points, setting in motion irreversible changes, including ice sheet disintegration with a continually adjusting shoreline, extermination of a substantial fraction of species on the planet, and increasingly devastating regional climate extremes”.

According to Baronsky et al. (2017)Localized ecological systems are known to shift abruptly and irreversibly from one state to another when they are forced across critical thresholds. Here we review evidence the global ecosystem as a whole can react in the same way and is approaching a planetary-scale critical transition as a result of human influence.” and “Climates found at present on 10–48 % of the planet are projected to disappear within a century ... The mean global temperature by 2070, or possibly a few decades earlier, will be higher than it has been since the human species evolved”.

Nor would the oceans fare better. According to Veron (2008): “The five mass extinction events that the earth has so far experienced have impacted coral reefs as much or more than any other major ecosystem. Each has left the Earth without living reefs for at least four million years, intervals so great that they are commonly referred to as ‘reef gaps’. The prospect of ocean acidification is potentially the most serious of all predicted outcomes of anthropogenic carbon dioxide increase. This study concludes that acidification has the potential to trigger a sixth mass extinction event and to do so independently of anthropogenic extinctions that are currently taking place.

Alas, a majority of the world’s 8.1 billion humans is only partly aware of the looming demise of human civilization in the wake of its near to 10 millennia history and of the mass extinction of advanced species, allowing the “powers that be” to perpetrate the biggest crime against humanity and nature in history (Figure 2). 

Figure 2. Henry Fuseli, The Nightmare (1781), in the Institute of Fine Arts, Detroit. Source: https://commons.wikimedia.org/wiki/File:John_Henry_Fuseli_-_The_Nightmare.JPG


A/Prof. Andrew Y Glikson
Earth and climate scientist

Andrew Glikson
Books:

The Asteroid Impact Connection of Planetary Evolution
https://www.springer.com/gp/book/9789400763272
The Archaean: Geological and Geochemical Windows into the Early Earth
https://www.springer.com/gp/book/9783319079073
The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth
https://www.springer.com/gp/book/9783319572369
The Event Horizon: Homo Prometheus and the Climate Catastrophe
https://www.springer.com/gp/book/9783030547332
Climate, Fire and Human Evolution: The Deep Time Dimensions of the Anthropocene
https://www.springer.com/gp/book/9783319225111
Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon
https://www.springer.com/gp/book/9789400773318
From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence
https://www.springer.com/us/book/9783030106027
Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia
https://www.springer.com/us/book/9783319745442
The Fatal Species: From Warlike Primates to Planetary Mass Extinction
https://www.springer.com/gp/book/9783030754679
The Trials of Gaia. Milestones in the evolution of Earth with reference to the Antropocene
https://www.amazon.com.au/Trials-Gaia-Milestones-Evolution-Anthropocene/dp/3031237080



Saturday, April 27, 2024

CO2 keeps accelerating

The Scripps Institution of Oceanography, UC San Diego, reported a daily average carbon dioxide (CO₂) at Mauna Loa, Hawaii, of 428.63 parts per million (ppm) on April 26, 2024, as illustrated by the image below. 

This is the highest daily average on record at Mauna Loa, which is the more remarkable since the annual CO₂ maximum is typically reached in May, so even higher values are likely to be reached over the next few weeks. 

The image below, adapted from NOAA, shows that the weekly mean CO₂ at Mauna Loa was 427.94 ppm for the week beginning on April 21, 2024, i.e. 3.98 ppm higher than the 423.96 ppm for the week 1 year earlier.

The image below, adapted from NOAA, shows that the daily mean CO₂ at Mauna Loa on April 26, 2024, was 428.59 ppm, a difference of 4.7 ppm from April 26, 2023.

 

The image below, adapted from NOAA, shows that the annual CO₂ growth at Mauna Loa in 2023 was 3.36 ppm, the highest annual growth on record.

The image below shows the daily average carbon dioxide recorded by NOAA over the past few years at Mauna Loa, Hawaii. 

Clouds Tipping Point

The image below illustrates that a polynomial trend (red) follows the recent acceleration in CO₂ concentration in the atmosphere more than a linear trend (blue). Data used are NOAA Mauna Loa weekly average CO₂ data through the week starting on April 21, 2024 (data downloaded April 28, 2024). 


The image below is the same as the image above, except that the canvas is zoomed out to show all data on record with trends extended to 2060 (X-axis) and CO₂ concentration going from 300 ppm to 1200 ppm (Y-axis). 


The red polynomial trend also illustrates how rising CO₂ can cause the clouds tipping point at 1200 ppm to be crossed well before 2060, i.e. earlier than anticipated in IPCC models (inset).

Moreover, the clouds tipping point could be crossed much earlier than 2060 when also taking into account methane. Monthly methane is approaching 2000 parts per billion (ppb) at Mauna Loa, Hawaii, as illustrated by the image below.


A methane concentration of 2000 ppb corresponds, at a Global Warming Potential (GWP) of 200, with a carbon dioxide equivalent (CO₂e) of 400 ppm. Together with the above daily average CO₂ concentration of 428.63 ppm this adds up to a joint CO₂e of 828.63 ppm, i.e. only 371.37 ppm away from the clouds tipping point (at 1200 ppm CO₂e) that on its own could raise the global temperature by 8°C.

This 371.37 ppm CO₂e could be added almost immediately by a burst of seafloor methane less than the size of the methane that is currently in the atmosphere (about 5 Gt). There is plenty of potential for such an abrupt release, given the rising ocean heat and the vast amounts of methane present in vulnerable sediments at the seafloor of the Arctic Ocean, as discussed in earlier posts such as this one.

Already now, local peaks can at times reach very high levels. The image below shows that the NOAA-20 satellite recorded a peak level of 2432 ppb at 399.1 mb on April 25, 2024, am. 


The MetOp-B satellite (also known as MetOp-1) recorded a peak methane level of 3644 ppb and a mean level of 1944 ppb at 367 mb on November 21, 2021, pm, as illustrated by the image below. 
[ from earlier post ]
[ from earlier post ]
Catastrophic crack propagation is what makes a balloon pop. Could low-lying clouds similarly break up and vanish abruptly? Could peak greenhouse gas concentrations in one spot break up droplets into water vapor, thus raising CO₂e and propagating break-up of more droplets, etc., to shatter entire clouds?

Could a combination of high CO₂ levels and high peak levels of methane suffice to cause the clouds tipping point to be crossed?

Moreover, nitrous oxide is also rising and there are additional elements that could further speed up the rise in CO₂e, as discussed at the Extinction page and this earlier post that warn about the potential for a temperature rise of well over 18°C to unfold as early as 2026.

A 2018 study (by Strona & Bradshaw) indicates that most life on Earth will disappear with a 5°C rise. Humans, who depend for their survival on many other species, will likely go extinct with a 3°C rise, as illustrated by the image below, from an earlier post.


Environmental crimes

The accelerating growth in carbon dioxide indicates that politicians have failed and are failing to take adequate action. 

Current laws punish people for the most trivial things, while leaving the largest crime one can imagine unpunished: planetary omnicide!

[ from earlier post ]

The image below is from the post Planetwide Ecocide - The Crime Against Life on Earth, by Andrew Glikson


If we accept that crimes against humanity include climate crimes, then politicians who inadequately act on the unfolding climate catastrophe are committing crimes against humanity and they should be brought before the International Criminal Court in The Hague, the Netherlands.

[ image from earlier post ]

Climate Emergency Declaration

The situation is dire and the precautionary principle calls for rapid, comprehensive and effective action to reduce the damage and to improve the situation, as described in this 2022 post, where needed in combination with a Climate Emergency Declaration, as discussed at this group.



Links

• NOAA - Carbon Cycle Gases - Mauna Loa, Hawaii, United States
https://gml.noaa.gov/dv/iadv/graph.php?code=MLO&program=ccgg&type=ts

• Scripps Institution of Oceanography
https://keelingcurve.ucsd.edu

• NOAA - Weekly average CO2 at Mauna Loa 
https://gml.noaa.gov/ccgg/trends/weekly.html

• NOAA - annual mean carbon dioxide growth rates for Mauna Loa
https://gml.noaa.gov/ccgg/trends/gr.html

• NOAA - greenhouse gases at Mauna Loa 

• How long do we have?
https://arctic-news.blogspot.com/2019/04/how-long-do-we-have.html


• Blue Ocean Event 2024?

• Potential temperature trends

• Co-extinctions annihilate planetary life during extreme environmental change, by Giovanni Strona and Corey Bradshaw (2018)
https://www.nature.com/articles/s41598-018-35068-1

• CO2 rise is accelerating


Friday, March 15, 2024

CO2 rise is accelerating

On March 15, 2024, the daily average carbon dioxide (CO₂) at Mauna Loa, Hawaii, was 427.93 parts per million (ppm), as illustrated by the image below, adapted from NOAA. 

This is the highest daily in situ average in the NOAA record at Mauna Loa, which is the more remarkable since the annual CO₂ maximum is typically reached in May, so even higher values are likely to be reached over the next few months. 

The image below, adapted from NOAA, shows 31 days of CO₂ at Mauna Loa, Hawaii. The image shows that a daily mean CO₂ of 427.93 ppm was recorded on March 15, 2024, and that many of the hourly averages that were recorded in April 2024 were higher than 430 ppm.

The image below, adapted from the Scripps Institution of Oceanography, shows that CO₂ at Mauna Loa was 427.80 ppm on March 14, 2024. The background shows six months of CO₂ ending March 15, 2024. 

The image below, adapted from NOAA, shows that the monthly mean CO₂ at Mauna Loa in March 2024 was 425.38 ppm, a growth of 4.39 ppm compared to March 2023. 

The image below, adapted from NOAA, shows that the annual CO₂ growth at Mauna Loa in 2023 was 3.36 ppm, the highest annual growth on record.

Temperature rise

The February 2024 global surface temperature is 1.75°C or 3.15°F when compared to a base of 1886-1915, i.e. a 30-year period centered around the year 1900, as illustrated by the image below. The image shows part (from 1980) of a graph based on NASA Land+Ocean data from January 1880 through February 2024, with the black squares showing the raw monthly data. 

The rise is as large as 2.74°C or 3.132°F when compared to a pre-industrial base and when also taking into account ocean air temperatures and higher polar anomalies, as indicated in the bright yellow inset on the image below. 

Lowess smoothing (red line, 1 year window) highlights variability between years and the huge rise that has occurred recently, which is partly caused by variability such as associated with El Niño. 

The red line also highlights the potential for an even larger rise to come soon, as feedbacks and further developments start to kick in with greater ferocity, contributing to non-linear and abrupt temperature rise, as discussed in earlier posts such as this one and this one

The use of an early date for a pre-industrial base is discussed at the pre-industrial page and is supported by recent analysis of sponges collected in the Caribbean, illustrated by the image below.

[ from earlier post ]

Other recent research debunks the idea that Earth’s surface (across land and sea) has experienced really hot temperatures over the last two billion years. Instead, it shows that Earth has had a relatively stable and mild climate. This makes the threat of a huge temperature rise over the next few years even more menacing. 

The temperature is rising most rapidly in the Arctic. Loss of sea ice threatens to accelerate the temperature rise in the Arctic even more, and cause destabilization of methane hydrates at the bottom of the Arctic Ocean and thawing of permafrost on land, resulting in massive releases of greenhouse gases, further acceleration of the temperature rise and widespread extinction of species (including humans) as early as in the year 2026.

Clouds Tipping Point

The image below illustrates that a polynomial trend (red) can better capture the acceleration in the rise in CO₂ concentration in the atmosphere than a linear trend (blue). 

The red polynomial trend also illustrates how rising CO₂ can cause the clouds tipping point at 1200 ppm to be crossed before 2100, i.e. earlier than anticipated in IPCC models (inset).

Moreover, the clouds tipping point could be crossed much earlier when also taking into account methane. Monthly methane was about 1960 parts per billion (ppb) recently at Mauna Loa, Hawaii, as illustrated by the image below.


A methane concentration of 1960 ppb corresponds, at a Global Warming Potential (GWP) of 200, with a carbon dioxide equivalent (CO₂e) of 392 ppm. Together with the above daily average CO₂ concentration of 427.93 ppm this adds up to a joint CO₂e of 819.93 ppm, i.e. only 380.07 ppm away from the clouds tipping point (at 1200 ppm CO₂e) that on its own could raise the global temperature by 8°C.

This 380.07 ppm CO₂e could be added almost immediately by a burst of seafloor methane less than the size of the methane that is currently in the atmosphere (about 5 Gt). There is plenty of potential for such an abrupt release, given the rising ocean heat and the vast amounts of methane present in vulnerable sediments at the seafloor of the Arctic Ocean, as discussed in earlier posts such as this one.

Furthermore, nitrous oxide is also rising and there are additional elements that could further speed up the temperatures rise, as discussed at the Extinction page, which shows that, altogether, there is the potential for a temperature rise of well over 18°C by 2026.

A 2018 study (by Strona & Bradshaw) indicates that most life on Earth will disappear with a 5°C rise. Humans, who depend for their survival on many other species, will likely go extinct with a 3°C rise, as illustrated by the image below, from an earlier post.


Environmental crimes

The accelerating growth in carbon dioxide indicates that politicians have failed and are failing to take adequate action. 

Current laws punish people for the most trivial things, while leaving the largest crime one can imagine unpunished: planetary omnicide!

[ from earlier post ]

The image below is from the post Planetwide Ecocide - The Crime Against Life on Earth, by Andrew Glikson


If we accept that crimes against humanity include climate crimes, then politicians who inadequately act on the unfolding climate catastrophe are committing crimes against humanity and they should be brought before the International Criminal Court in The Hague, the Netherlands.

[ image from earlier post ]

Meanwhile, Belgium has recognised ecocide as international crime and the EU Parliament has voted to criminalize the most serious cases of ecosystem destruction. 

Climate Emergency Declaration

The situation is dire and the precautionary principle calls for rapid, comprehensive and effective action to reduce the damage and to improve the situation, as described in this 2022 post, where needed in combination with a Climate Emergency Declaration, as discussed at this group.



Links

• NOAA - Carbon Cycle Gases - Mauna Loa, Hawaii, United States
https://gml.noaa.gov/dv/iadv/graph.php?code=MLO&program=ccgg&type=ts

• Scripps Institution of Oceanography
https://keelingcurve.ucsd.edu

• NOAA - Weekly average CO2 at Mauna Loa 
https://gml.noaa.gov/ccgg/trends/weekly.html

• NOAA - annual mean carbon dioxide growth rates for Mauna Loa
https://gml.noaa.gov/ccgg/trends/gr.html

• NOAA - greenhouse gases at Mauna Loa 

• Belgium becomes first in EU to recognise ecocide as international crime 
https://www.facebook.com/groups/climateplan/posts/8012665172096853

• ‘Revolutionary’: EU Parliament votes to criminalise most serious cases of ecosystem destruction 

• How long do we have?
https://arctic-news.blogspot.com/2019/04/how-long-do-we-have.html


• Blue Ocean Event 2024?

• Potential temperature trends

• Co-extinctions annihilate planetary life during extreme environmental change, by Giovanni Strona and Corey Bradshaw (2018)
https://www.nature.com/articles/s41598-018-35068-1

• NASA GISTEMP - Temperature analysis Plots
https://data.giss.nasa.gov/gistemp/graphs_v4/customize.html

• Tragedy set to unfold in tropics 
https://arctic-news.blogspot.com/2024/02/tragedy-set-to-unfold-in-tropics.html

• 300 years of sclerosponge thermometry shows global warming has exceeded 1.5 °C - by Malcolm McCulloch et al. (2024)
https://www.nature.com/articles/s41558-023-01919-7
discussed at facebook at: 
https://www.facebook.com/groups/arcticnews/posts/10161250170389679

• Oxygen isotope ensemble reveals Earth’s seawater, temperature, and carbon cycle history - by Terry Isson et al. 

Friday, January 19, 2024

Potential temperature trends

[ click on images to enlarge ]

The above image shows potential temperature trends. Four of the trends are global ones and one trend is based on Arctic (64°North-90°North) data:

  • The red line is a polynomial trend based on 15 years of Arctic data (2009-2023).
  • The green line is a linear trend based on 1880-2023 global data.
  • The yellow line is a linear trend based on 2009-2023 global data.
  • The light blue line is a 10-year moving average (trailing), based on global data.
  • The dark blue line is a polynomial trend, based on 2015-2023 global data, showing global temperatures catching up with the Arctic rise in temperature.

Note that the above image uses annual anomalies from 1951-1980. Recent posts show that, when adjustments are made for an earlier base, for ocean air temperatures and for higher polar anomalies, the 2023 anomaly could be as high as 2.5°C from pre-industrial and when using monthly data, the anomaly could be as high as 2.73°C from pre-industrial. 

Temperature rise hits Arctic most strongly 

Due to feedbacks such as sea ice loss, the temperature rise is felt most strongly at higher latitudes North, as illustrated by the three images below, again using a 1951-1980 baseline.

The image below shows the December 2023 temperature anomaly. 

The image below shows the 2023 temperature anomaly. 

The image below shows how the temperature rise has unfolded from 2000.  

[ Arctic Ocean hit most strongly by temperature rise ]

Over the next few years, the temperature rise in the Arctic could accelerate even more strongly as a result of crossing of two tipping points, i.e. the Latent Heat Tipping Point and the Seafloor Methane Tipping Point, as illustrated by the image below, from an earlier post.

[ increasing ocean heat ]
Note again that annual data are used in the above image. An earlier analysis using monthly data shows that the seafloor methane tipping point was reached in August 2023.

Arctic sea ice extent

Arctic sea ice extent in 2024 was larger than many expected. One of the reasons for this is that Greenland ice has been melting faster than previously thought, as pointed out by a recent study that also includes retreat of glaciers that already lie mostly below sea level. More melting of ice on Greenland has resulted in a larger south-bound flow of icebergs and meltwater, contributing to cooling of the North Atlantic sea surface and slowing down of the Atlantic meridional overturning circulation (AMOC), and in turn contributing to suppress temperatures in the Arctic. As a result, loss of Arctic sea ice extent has been less than would otherwise have been the case. Yet, the temperature rise may soon overwhelm this suppression.

Cold freshwater lid at surface of North Atlantic

[ ocean stratification, from earlier post ]

Slowing down of AMOC and cooling due to heavier melting of Greenland's ice is causing less ocean heat to reach the Arctic Ocean, while a huge amount of ocean heat is accumulating in the North Atlantic, as it did in 2023. A large part of this heat in the North Atlantic can also be present underneath the sea surface.

These developments occur at the same time as ocean stratification increases (see above image) as temperatures rise, as more freshwater enters the ocean as a result of more meltwater and of runoff from land and from rivers, and as more evaporation takes place and more rain falls further down the path of the Gulf Stream, all of which can contribute to formation and growth of a cold, freshwater lid at the surface of the North Atlantic.

[ cold freshwater lid on North Atlantic ]

Furthermore, storms can get stronger as temperatures rise and as changes take place to the Jet Stream. Strong wind can temporarily speed up currents that carry huge amounts of ocean heat with them toward the Arctic Ocean, as discussed in earlier posts such as this one. Much of the ocean heat in the North Atlantic can therefore be pushed abruptly underneath this freshwater lid and flow into the Arctic Ocean.

The danger is that huge amounts of ocean heat can abruptly get pushed into the Arctic Ocean and that the influx of ocean heat will destabilize hydrates contained in sediments at the seafloor of the Arctic Ocean, resulting in eruptions of huge amounts of methane.

[ click on images to enlarge ]

This danger is further illustrated by the above compilation image, showing forecasts for January 27, 2024 of:
(1) surface wind and temperature (-3.6°C or 25.4°F at the North Pole)
(2) surface wind
(3) wind at 700 hPa
(4) wind at 250 hPa (Jet Stream) and
(5) ocean currents at surface and wave height.

The image below shows that temperatures are forecast to be above freezing near the North Pole on January 26, 2024 20:00 UTC (downloaded January 26, 2024 06:00 UTC). 


Ominously, the North Atlantic sea surface was much hotter in early 2024 than it was in early 2023.


And ominously, the daily sea surface temperature reached a record high on January 31, 2024, when the daily sea surface temperature reached 21.10°C, higher than the peak of 21.09°C reached in August 2023 and much higher than the 20.99°C peak reached in March 2016.


As latent heat buffer shrinks, Arctic sea ice could melt away quickly

As illustrated by the image below, sea ice was very thin near the North Pole on January 24, 2024, indicating there is very little left of the latent heat buffer constituted by the sea ice to consume incoming heat. 
And even more ominously, Arctic sea ice thickness declined dramatically in a few days time, as indicated by the compilation image below, with images from the University of Bremen. 


For the time of year, Arctic sea ice extent is currently still extensive, compared to earlier years, which is a reflection of more water vapor in the atmosphere and more precipitation. While sea ice extent is relatively large, Arctic sea ice volume now is among the lowest of all years on record for the time of year, as illustrated by the image below. Volume = extent x thickness, so low volume and relatively large extent means that sea ice is very thin. 
As more sunlight starts reaching the Northern Hemisphere, in line with seasonal changes, Arctic sea ice extent can be affected dramatically and abruptly, as illustrated by the image below.

Furthermore, much of the thicker sea ice is located off the east coast of Greenland, as illustrated by the image below. This means that this sea ice is likely to melt away quickly as temperatures rise in line with seasonal changes.
Without the buffer constituted by thicker sea ice, such an influx of ocean heat could destabilize hydrates contained in sediments at the seafloor of the Arctic Ocean, resulting in eruptions of huge amounts of methane. 
[ The buffer is gone - Latent Heat Tipping Point crossed ]

Given methane's very high immediate global warming potential (GWP), this could push up temperatures dramatically and rapidly. 

[ potential methane rise, from earlier post ]

[ from the Extinction page ]
The above image shows a polynomial trend added to NOAA globally averaged marine surface monthly mean methane data from April 2018 to November 2022, pointing at 1200 ppm CO₂e (carbon dioxide equivalent) getting crossed in 2027.

A rise in methane concentrations alone may suffice to cause the Clouds Tipping Point, at 1200 ppm CO₂e, to get crossed. The resulting clouds feedback could on its own cause the temperature to rise by a further 8°C. 

When further forcing is taken into account, crossing of the Clouds Tipping Point could occur even earlier than in 2027.

The image on the right illustrates how a huge temperature could unfold and reach more than 18°C above pre-industrial by 2026.

With such a rise, the temperature is likely to keep rising further, with further water vapor accumulating in the atmosphere once the water vapor tipping point gets crossed, as discussed in an earlier post and at Could Earth go the same way as Venus? 

As a rather sobering footnote, humans will likely go extinct with a 3°C rise and most life on Earth will disappear with a 5°C rise, as illustrated by the image below, from an earlier post.
[ from earlier post ]

Climate Emergency Declaration

The situation is dire and the precautionary principle calls for rapid, comprehensive and effective action to reduce the damage and to improve the situation, as described in this 2022 post, where needed in combination with a Climate Emergency Declaration, as discussed at this group.



Links

• NASA - Goddard Institute for Space Studies (GISS) Surface Temperature Analysis
https://data.giss.nasa.gov/gistemp

• Ubiquitous acceleration in Greenland Ice Sheet calving from 1985 to 2022 - by Char Greene et al. https://www.nature.com/articles/s41586-023-06863-2
discussed at facebook at: 
https://www.facebook.com/groups/arcticnews/posts/10161223121909679

• Danish Meteorological Institute - Arctic sea ice volume and thickness
https://ocean.dmi.dk/arctic/icethickness/thk.uk.php

• Cold freshwater lid on North Atlantic
https://arctic-news.blogspot.com/p/cold-freshwater-lid-on-north-atlantic.html

• Latent Heat
https://arctic-news.blogspot.com/p/latent-heat.html

• Pre-industrial
https://arctic-news.blogspot.com/p/pre-industrial.html

• Could Earth go the same way as Venus?